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The loss of the Mars Climate Orbiter due to a software

error [ I ] reveals what insiders know: software development

is difficult and risky because, in part, current practices do
not readily handle the complex details of software. Yet, for

scientific software development the MCO mishap repre-
sents the tip of the iceberg; few errors are so public, and
many errors are avoided with a combination of expertise,

care, and testing during development and modification.
Further, this effort consumes valuable time and resources
even when hardware costs and execution time continually

decrease. Software development could use better tools!
This lack of tools has motivated the semantic analysis

work explained in this report. However, this work has a
distinguishing emphasis; the tool focuses on automated

recognition of the fundamental mathematical and physical
meaning of scientific code. Further, its comprehension is
measured by quantitatively evaluating overall recognition

with practical codes. This emphasis is necessary if soft-
ware errors--like the MCO error--are to be quickly and

inexpensively avoided in the future.
This report evaluates the progress made with this

problem. It presents recommendations, describes the

approach, the tool's status, the challenges, related research,
and a development strategy.

Recommendations

• From a technical perspective, the evidence indicates that
a practical automated semantic analysis tool can be

developed and thus work should continue.

• The tool should be developed in more than one stagc:
1) Complete a unit analysis and "wrapping" tool tor

general applications (estimate 1-3 person-years de-
pending on requirements)

2) Complete additional mathematical/physical proper-

ties--possibly as an open source project.

1. Background

Physical and mathematical formulae and concepts are
fundamental elements of scientific and engineering soft-
ware. These classical equations and methods are time
tested, universally accepted, and relatively unambiguous.

Computer science understandably neglects these multi-
disciplinary program details in favor of the general prob-
lem: analysis of code based on the programming language's
semantics. Yet, much of the time and expense of scientific
code development and maintenance derives from manually

analyzing a code's physical and mathematical semantics.
Further, the elegance of classical physical and mathemati-
cal methods suggests a method of automating scientific
code semantic analysis. The work discussed here has
explored the feasibility of semantic analysis.

To investigate code comprehension in this classical

knowledge domain, a research prototype tool has been
developed. The prototype incorporates scientific domain
knowledge to recognize code properties (including unit
lbrmulae, physical and mathematical equations). Also, the

procedure emulates program execution to propagate these
symbolic properties through the code. Results of these
analyses, including errors detected, are presented through a
graphical user interface (GUI).

2. Tool description

From a user's perspective, this procedure involves taking
a user's existing scientific or engineering code (I), adding

semantic declarations, and viewing/querying the analysis
results (Figure I). Semantic declarations (distinguished by

"C?") identify primitive program variables using standard-
ized technical terms (i.e., mass, acceleration).

C? MA== mass

C? ACC == acceleration (1)
FF = MA*ACC

From the analysis perspective, this procedure involves
three elements: a scientific semantics analysis procedure, a

programming language emulator, and a graphical user
interface; the following sections explain each element.

2.1 Scientific semantics analysis procedure

Classical mathematics emphasizes equations--lexical,

sequential expressions that quantify physical or mathemati-
cal concepts. A parser is not only an effective way of

representing a large set of these physical equations, but it
can also efficiently recognize these equations in program

expressions.
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Figure 1:GU1 display for the semantic analysis program. The top area displays the user's code: the middle
region explains selected text; the bottom area is a dictionary/lexicon.

In particular, (I) may be translated into expressions of code

properties, including a physical quantity expression (2),
and a physical dimensions expression (3).

mass * acceleration (2)
(M) * ( L'T**-2 ) (3)

Parsers recognize formulae in these translated phrases. For
example, a dynamics expert parser would include the rule

(4), be able to recognize the phrase (2) as Newton's law,
and annotate the data structure.

force _ mass * acceleration (4)

The dimensions expert parser can reduce (3) and verify

consistency. These properties (Table 1) reflect the differ-

ent aspects of program statements that scientists and
engineers analyze. Table 2 samples physical and mathe-
matical rules.

force _ mass * accel

Math Equation
Value/Interval [1,50] ¢= [0,49] + I 2

Grid Location @i_ @i+lJr"_i-I 4

Vector Analysis @.@_ @2 + _v._+ @__ 1

Non-Dimensional @/A _ _/A + q)/A 1

Dimensions L _ (Lff) * T 1
Unit m _ m/s * s 1

Object fluid _ fluid * anythin_ 1

Language Emulation mass _ A(I,J,K) _ mass 2

Table 1: Scientific semantic properties analyzed by the proce-
dure, including sample equations and number of parsers.
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Mathematical Quantity

i q i i1_ /q

0 _ ql - q_"

Aq _ qt - q2

Zq_q+q+...

2q _ qj + q2

A-'q _ q- 2q +q

bq/_x _ Aq / Ax

32q/bx -__ A-'q / Ax2

0q/by _ bq/Ox * bx/by

V.q = expression

Physical Quantity
i

F _ m * A

p _ F / area

W _ F * length
Ek_ 1/2" m * U 2

ek _ 1/2* U-"

Ru ¢= k * N A

R _ R_ / Mol. wt.

R_Cp -C,

y_Cp /C,

c-" _ 7*p/p

Vxq _ expression p / p = R * T

q_xqz _ expression h _ ei + w

Table 2: A sampling of mathematical

Physical Quantity

'oc'=oK-zb3.15
°F_ 1.8"°C +32

E=F/q
V_IR

Pr_Cp p./k

Reynolds _ p * U * length/la

U0_ rf2
Circum = 2 rt r

vol _ length * area

area = length * length
M_U/c

3m/Ot ¢= p * U * A

and physical expert parser rules.

2.2 Programming language emulation
Semantic analysis of a code depends on more than

scientific and mathematical properties: programming

language semantics are important too. Consequently, code
execution is simulated so that the analyzed properties

(Table 1) are propagated faithfully from read statements

through array storage and retrieval, through iterative and
conditional statements, through external variables, and to
and from subroutine calls--all in call tree order. The

parser paradigm of section 2. l does not readily apply here:
specialized coding is required to handle each of these
functions.

2.3 User Interface

The GUI gives the user control of the semantic analysis
and displays the user's code as well as the analysis results
(Figure 1). The analysis implements intermediate result
storage, that is, when the user selects text from the dis-

played code, variable properties from that point in execu-
tion are displayed t. This storage of expression and array

properties for display increases memory requirements. A
dictionary provides definitions of technical terms. Addi-
tionally, users may search for semantic concepts, naviga-
tion tools assist in discovering results, and equations are
automatically typeset.

3. Current Status

This work has emphasized development of expert

parsers and delayed program emulation improvements.
Expert parsers were thought to be novel, progress limiting
technology, while program emulation was thought to be
mundane. The current status of the expert parsers and

emulation functions reflects this strategy, as explained in

For routines executed more than once, only a single execution
copy may be retained.

the first two sections. In the last section, numerical

recognition metrics gauge the tool's overall development.

3.1 Status of expert parsers
Using parsers to recognize equations has been success-

ful. The parsers represent equations concisely and are
computationally efficient, and recognition is robust.
Parsers have some limitations [2, 3], but on balance they
are successful.

The most mature experts are dimensional and vector
analysis parsers since they involve a small set of semantic

rules (A®B simplifies to C), and a small set of operands or

symbols---(M, L, T, °T .... ) and (x, y, z, r, 0, _0.... )
respectively. In comparison, the unit and grid location
analysis experts involve a small set of semantic rules but a

large set of operands---ffom inches, watts, and lumens to
carats, chains, and cubits: conversion constants must also
be known (i.e., 0.0254 m/in). Completion requires the
addition of operands and conversion constants to tables.

The physical equation experts have a vast set of semantic
rules (Table 2) and operands-approximately grouped into
scientific disciplines; however, considerable experience
and confidence has accumulated. Kinematics, dynamics,
and gasdynamics expert parsers are well developed;
chemistry and fluid equation parsers are partially devel-
oped; electromagnetic, nuclear, structural, geophysical, and
astrophysical experts are undeveloped. Devising parsers
for physical equations has been straightforward, and the
world of physical equations may be captured best by
community development in an open source project.

Recognizing mathematical equations is a harder problem
(Table 2}. For example, a difference, ¢-_ for any g), may be

zero or A_; resolution depends on examining other proper-

ties of _. These additional tests (5) make rule development
difficult, and the resulting rules are sensitive.

_x¢ = 0-¢ (5)

{ Additional Tests }
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Theseexpertparsersaresupportedbydatastructures,
adjectives,andCommutative,Distributive,andAssociative
transformations.Thisinfrastructureiswelldeveloped.

3.2 Status of program emulation
Program emulation involves functions that imitate

program execution, in particular, transferring properties as
the programming language semantics dictate. These
functions include assigning a result to a scalar or array
variable, resolving an array reference, analyzing loops and
their contained statements, analyzing conditional expres-
sions, using external variables, transferring parameters and
execution between routines, and executing routines in call
tree order.

All these functions, except conditional analysis, have
been implemented. Development of conditional analysis
has been delayed to concentrate on other issues". Within

loops, iterative statements, A = A®B, and inductive
statements, Ai+l = F (Ai), are under-developed.

A difficult problem in program emulation is assigning
results to arrays and resolving array references.

DOIOI=2, NI-1

A(3,I) = velox
I0 CONTINUE

•.. (6)

varl = A(I)

varl = A(3,ii)
varl = A(3+Nl*ii)

On assignment, the array assignment function must deduce
the array's structure and store all the entry's properties in
the array representation. To resolve an array reference, the
array reference function uses the indices to search the array
representation. Memory limits force the elements of an

array to be represented with only a few entries. The
existing functions implement a good algorithm, but it is not
mature.

3.3 Performance measurement

The success of this tool has been evaluated by calculat-

ing and monitoring several metrics. Execution speed is
better than analyzing one thousand lines of code (Kloc)

per min; observed memory usage is at most 15 Mb / K loc.
These results are evidence of reasonable performance in
the future. Further, as the number of semantic rules grows,
execution time should grow linearly. This is because,

theoretically and experimentally, the tool's execution time
is linear in the number of parsers. Further, each parser's
memory usage is quadratic in the number of rules.

However, the key metric measures program comprehen-
sion. In this metric, the program representation is searched

for each operation, A®B where ®_{+, -, *, /, **};
function reference, fla); and array reference, A(i,j,k). The

-"The approach will be to construct, simplify, and propagate truth
tables. Memory, requirements may increase dramatically.

recognition rate is the fraction of these operations where

the property (units, mathematical/physical quantity) is
understood.

This recognition fraction is measured for a set of blind

test cases and development test cases. The twelve test
cases include one-, two-, and three-dimensional CFD codes

for turbomachinery problems, an experimental data
reduction code, and a chemically reacting fluid flow code.

These are typical, practical, scientific and engineering
codes. Figure 2 shows recognition over time for unit
analysis. For clarity, only development test cases are
shown. Physical/mathematical recognition measurements
are not presented here because of the recent emphasis on
unit analysis and property propagation.

4. Challenges and strategy

The short-term challenges are to improve propagation of
properties during simulated execution and to deliver a

useful tool. The long-term challenges include improving
the physical/mathematical recognition rate and extending
the tool's capabilities.

4.1 Short-term challenges

High recognition rates are necessary for a useful tool,
and efforts have focused on this problem. Originally, rule

omissions and errors in the expert parsers were believed to

be limiting recognition. However, unit analysis is mature

and should handle all expressions; but unit recognition is
low for larger codes (Figure 2). This result implies that

program emulation functions are not propagating units and
other properties during execution. Additional work has

confirmed this observation, and the current strategy is to

improve property propagation as reflected in unit recogni-
tion rates.

No single error or misconception is causing this propa-
gation problem. Usually, an array reference or array

assignment is the point of failure, but the problem origi-

nates elsewhere since the array analysis functions are very
dependent upon the expert parsers for their analyses. The

ultimate cause varies from an outright error, to a rule

omission, to an unanticipated language feature like com-
pressed indices (i.e., A(i+Ni*(j-l)) instead of A(i,j)).

Once a propagation error occurs, the inference sequence

is broken and the error cascades through any subsequent
code. Consequently, the recognition fraction can be

substantially reduced for all analyzed properties (Table l).

Resolving this problem should improve all property
recognition rates.

In summary, the short-term challenges are:

• improve program emulation,

• implement conditional analysis,

• improve and polish other property analyses to deliver a
basic tool.
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Figure 2: The variation in unit recognition fraction during recent development for the four development test cases. Unit recognition

measures propagation of properties during emulation of a code's execution. The smaller codes, Comdes and Flow Inlet, easily reach

high unit recognition. Recent work has focused on improving emulation in the larger, array intensive STAGE2 code, which demon-

strates improvement. The AIlspd20b test case has remained untouched except for brief visits reflected in sharp upward jumps. The deep

valleys in the graph correspond to the development and introduction of new semantic analysis code, including subroutine call tree
ordering. Other volatility in the graphs reflects smaller code modifications. For clarity, the eight blind test cases are not shown; they

show gradual improvement and range from recognition fractions of 0.20 to 0.55.

4.2 Long-term challenges

Beyond the short-term problem of improving program

emulation and unit recognition, there are several important

issues. One is improving the physical/mathematical

recognition rate. As program emulation and propagation

problems are resolved, this metric will certainly increase,

but additional work will be necessary. Other potential

long-term extensions of the tool include:

• Simulate/analyze inter-code file/message communica-
tions

• Analyze C and FORTRAN 90 code,

• Summarize routines as interfaces to reduce simulation,

• Analyze code lot performance, programming language

information, and parallelization,

• Extend physical rules to other scientific domains,

• Extend to applications other than those of science and

engineering,

• Recognize algorithms, not just equations.

5. Similar tools and research

Tools and research already support software develop-

ment and maintenance. However, there is apparently little

overlap with the automated semantic analysis work de-

scribed here.

Tools exist that assist in software development, includ-

ing programming language syntax/semantics checking [4],

visual program debugging, and formal verification of

concurrent systems [5] and concurrent elements of software

[6]; but, each is distinctly different from semantic analysis.

Techniques also exist that assist in software development,

including object oriented software development [7] and

verification and validation techniques.

Software synthesis tools exist 18, 9], yet they are again

distinct from this work because they concern software

synthesis based on high level and not fundamental seman-

tics. Analysis and modification of code parse trees is time-
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honoredincompileroptimizationandisbeingexploredin
automatedparallelization[10].

Similarwork[11,12,13]conceptualizessoftwareasa
hierarchyof "cliches"orcommonimplementationpatterns.
Clichesfroma librarymaybeautomaticallyrecognized
fromunannotatedsourcecode. Implementationsof this
conceptareapparentlylimited;classicalmathematical
notation,scientificproperties(TableI), andsemantic
declarationsarenotmentioned.

6. Conclusions

The conclusions are threefold: this is a useful tool, work

should continue, and the development plan begins with a

unit analysis tool.

6.1 A useful tool

The Mars Climate Orbiter's fatal software error was a

unit error [i]--the orbiter transmitted an impulse value in

English units while ground-based software expected metric

units. This error compromised trajectory modeling, and the

navigation team did not recognize the telltale signs.

One can realistically expect that this tool could find this

error--when mature with extensions for inter-code

communications.

However, the MCO software error is the tip of the

iceberg. Few errors are so public; most errors are avoided

with extensive testing and care, which involve expensive

and time-consuming manual effort. Yet, this tool promises

to automatically analyze more than units, and all these

properties are important for a wide range of scientific
codes.

Lastly, this tool is also a discovery tool; it documents the

code minutia that is critical for maintenance. Most pro-

grammers devote many hours to analyzing unfamiliar

legacy code to ensure their changes have only the desired

effect. This tool would alleviate this problem.

6.2 Evidence supporting continued effort

There are three technical reasons supporting continued

development of this semantic analysis tool. First, expert

parsers are a good approach to equation recognition. They

robustly and efficiently recognize equations used in

practical scientific codes. Second, the tool integrates

expert parsers, program emulation, and other techniques,

which demonstrate measurable progress in analyzing

practical scientific codes. Third, there is apparently no

other work being done on this particular problem.

6.3 Development plan

Development of a unit analysis tool would be a useful

initial product that can be realized in the short term with

limited manpower. The resulting tool could discover

program details needed for maintenance or "wrapping".

Further, this objective focuses effort on lynchpin issues,

including program emulation.

Lastly, a unit analysis tool would be a good foundation

for an extended product. Existing analyses could be

improved, additional analyses could be added, and exten-

sions could be investigated.
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